Suppression of Immune Response to Adenovirus Serotype 5 Vector by Immunization with Peptides Containing an MHC Class II Epitope and a Thio-Oxidoreductase Motif.
نویسندگان
چکیده
The main obstacle to viral vector-mediated gene therapy remains the elicitation of an immune response to the vector, resulting in clearance of transgene and resistance to further transgenesis. Specific antibody production contributes to such immune responses. A single class II-restricted epitope of adenovirus serotype 5 (Ad5) vector hexon-6 capsid protein containing a thiol-oxidoreductase motif was used in an attempt to prevent specific antibody production in response to Ad5 vectors. We demonstrate here that such immunization carried out before intravenous administration of Ad5 vectors prevents antibody production to the ensemble of Ad5 vector proteins in both BALB/c and C57BL/6 mice. The antibody response to Ad5 is dependent on innate immune activation, seemingly involving natural killer T (NKT) cells. We observed that immunization with a class II-restricted Ad5 peptide prevents such NKT cell activation. Increased transgenesis and prolonged transgene expression result from such immunization, providing a simple protocol for improving gene therapy.
منابع مشابه
Identification of a Novel CD8 T Cell Epitope Derived from Plasmodium berghei Protective Liver-Stage Antigen
We recently identified novel Plasmodium berghei (Pb) liver stage (LS) genes that as DNA vaccines significantly reduce Pb LS parasite burden (LPB) in C57Bl/6 (B6) mice through a mechanism mediated, in part, by CD8 T cells. In this study, we sought to determine fine antigen (Ag) specificities of CD8 T cells that target LS malaria parasites. Guided by algorithms for predicting MHC class I-restrict...
متن کاملMHC Class II-Restricted Epitopes Containing an Oxidoreductase Activity Prompt CD4+ T Cells with Apoptosis-Inducing Properties
Abrogating an unwanted immune response toward a specific antigen without compromising the entire immune system is a hoped-for goal in immunotherapy. Instead of manipulating dendritic cells and suppressive regulatory T cells, depleting effector T cells or blocking their co-stimulatory pathways, we describe a method to specifically inhibit the presentation of an antigen eliciting an unwanted immu...
متن کاملEpitope spreading upon P815 tumor rejection triggered by vaccination with the single class I MHC-restricted peptide P1A.
Epitope spreading has been best characterized as an exacerbating factor in CD4(+) T cell-dependent autoimmune disease models and is believed to occur via presentation of antigens liberated by tissue destruction initiated by CD4(+) T cells specific for a primary epitope. The growing evidence that exogenous antigens can also be processed and presented by class I MHC molecules has suggested that e...
متن کاملImmunization with Hexon Modified Adenoviral Vectors Integrated with gp83 Epitope Provides Protection against Trypanosoma cruzi Infection
BACKGROUND Trypanosoma cruzi is the causative agent of Chagas disease. Chagas disease is an endemic infection that affects over 8 million people throughout Latin America and now has become a global challenge. The current pharmacological treatment of patients is unsuccessful in most cases, highly toxic, and no vaccines are available. The results of inadequate treatment could lead to heart failur...
متن کاملپیشرفت های جدید در شناخت اسپوندیلوآرتروپاتی ها
In last few years, numerous observations and studies on pathogenesis of spondyloarthropathies have been published and an animal model which confirms the associations of new information is now available. Bacteria which are responsible for reactive arthritis all can remain in the cells for long time. Molecules of class I MHC are able to present the intracellular peptides to immune system. B27 mol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human gene therapy
دوره 27 3 شماره
صفحات -
تاریخ انتشار 2016